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| EXTENSIONS OF THE GAUVIN-TOLLE OPTIMAL VALUE DIFFERENTIAL
| STABILITY RESULTS TO GENERAL MATHEMATICAL PROGRAMS

by

Anthony V. Fiacco
William P. Hutzler

1. Introduction

The sensitivity of the optimal value function of a mathematical
program to perturbations of the problem parameters has been addressed
by a number of authors. Using point-to-set maps, Berge [4] derived
conditions sufficient for the semi-continuity of the optimal value
f e function for programs with constraint set perturbations, and provided
a general framework for some of the earliest work on the variation of
the "perturbation function," i.e., the optimal objective function
value, with changes in a parameter appearing in the right-hand side of

the constraints. Evans and Gould [7] gave conditions guaranteeing the

continuity of the perturbation function when the constraints are func-
tional inequalities. Greenberg and Pierskalla [13] extended the work
of Evans and Gould to obtain results for general constraint perturba-
tions and obtained some initial results for programs with equality con-
straints. In [15], Hogan established conditions sufficient for the
continuity of the perturbation function of a convex program, and in

[16]) gave conditions implying the continuity of the optimal value
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function of a non-convex program when a parameter appears in the objec-
tive function.

The first- and second~order variation of the optimal value of a
general nonlinear program under quite arbitrary parametric perturba-
tions has been investigated by Hogan [15], Armacost and Fiacco [1,2,3],
Fiacco [9], and Fiacco and McCormick [10]. In [2] the optimal value
function is shown, under strong conditions, to be twice continuously
differentiable, with respect to the problem parameters, with its
parameter gradient (Hessian) equal to the gradient (Hessian) of the
Lagrangian of the problem. Armacost and Fiacco [1] have also obtained
first~ and second-order expressions for changes in the optimal value
function as a function of right-hand side perturbations.

A number of results relating to the differential stability of

’ the optimal value function have also been obtained, generally associ-
ated with the existence of directional derivatives or bounds on the
directional derivative limit quotient. Danskin [5,6] provided one of

the earliest characterizations of the differential stability of the

:
3
i

optimal value function of a mathematical program. Addressing the
problem minimize f(x,c) subject to XeS, S some topological space,

€ in Ek, Danskin derived conditions under which the directional de-
rivative of f* exists and also determined its representation. This
reault has wide applicability in the sense that the constraint space,
S, can be any compact topological space. However, the result is re-
stricted to a constraint set that does not vary with the parameter

€. For the special case in which S is defined by inequalities in-

volving a parameter, g, (x,e) > 0 for 1 = 1,...,m, where f is convex
1 -
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and the g; are concave on S, Hogan [15] has given conditions that imply
that the directional derivative of f* exists and is finite in all
directions.

For programs without equality constraints, Robinson [20] has
shown that, under certain second-order conditions, the optimal value
function satisfies a stability of degree two. Under this stability
property, bounds on the directional derivative of f* can be derived.
For convex programming problems, Gol'stein [12] has shown that a saddle
point coandition is satisfied by the directional derivative of f*.
Gauvin and Tolle [11], not assuming convexity, but limiting their
analysis to right-hand side perturbations, extended the work of
Gol'stein and provide sharp upper and lower bounds on the directional
derivative limit quotient of f*, assuming the Mangasarian-Fromovitz
constraint qualification and without requiring the existence of
second-order conditions. Sensitivity results for infinite dimen-
sional programs have recently been obtained by Maurer [18,19], who
developed a representation for the directional derivative of the sub-
gradient of the optimal value function of such problems.

The purpose of this paper is to extend the work of Gauvin and
Tolle to the general mathematical program in which a parameter appears
arbitrarily in the constraints and the objective function. For this
problem we obtain the Gauvin-Tolle upper and lower bounds on the
directional derivative limit quotient of the optimal value function.

The mode of proof closely parallels that given by Gauvin and Tolle [11].
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2. Notation and Definitions

In this paper we shall be concerned with mathematical programs

of the form:

minx f(x,€) P(e)

g.t, gi(x,e) >0 (i=1,...,m), hj(x,e) = 0 (=L, .e.sD)s

where xeE™ is the vector of decision variables, € is a parameter vector

in Ek, and the functions f, 84 and hj are once continuously differen-

tiable on E" x Ek. The feasible region of problem P(ec) will be denoted

R(e) and the set of solutions S(e). The m-vector whose components
are gi(x,e), i=1,...,m, and the p~vector whose components are
hj(x,e), j=1,...,p, will be denoted by g(x,e) and h(x,e), respec-
tively.

Following usual conventions the gradient, with respect to x, of
a.once differentiable real-valued function f: Eank+El is denoted
fo(x,e) and is taken to be the row vector [3f(x,e)/dx

100"
If g(x,e) is a vector-valued function, g: Eank+E , whose components

,af(x,c)/axn].

gi(x,e) are differentiable in x, then ng(x,s) denotes the m x n Jacobian
matrix of g whose ith row is given by ngi(x,e), i=1,...,m. The trans-
pose of the Jacobian ng(x,e) will be denoted V;g(x,e). Differentiation
with respect to the vector € is denoted in a completely analogous fashion.
Henceforth, we do not distinguish between row and column vectors in this
paper; their use should be clear from the context in which they are applied.

The lagrangian for P(e) will be written

m
L(x,u,w,e) = f(x,€) - 17_:1 uisi(x.f:) + wjhj(x.E).

"., oo .v
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and the set of Kuhn~Tucker vectors corresponding to the decision vec-

I T T e D e T

tor x will be given by

K(x,e) = {(u,w)emeEp:VxL(x,u,m,e) = 0, Wy 2 0, uigi(x,e) S P NGRS |

! Writing a solution vector as a function of the parameter e, the index
set for inequality constraints which are binding at a solution x(e) is
denoted by B(e) = {i:gi(x(e),e) = 0}. Finally, the optimal value

|

u! ‘ function will be defined as
|
: f*(e) = min {f(x,€e):xeR(e)}.

1 Throughout this paper we shall make use of the well known
Mangasarian-Fromovitz Constraint Qualification (MFCQ) which holds at

at point xeR(e) if:

i) there exists a vector ?tEn such that

ngi(x,s) ¥ > 0 for i such that gi(x,e) =0 and (2.1)

V h,.(x,e) ¥ =0 for j=1,...,p; and (2.2) ,
xj ﬁ

ii) the gradients Vxhj(x,s), j=1,...,p, are linearly

independent.

U ] Y MR T AU e

{ ¢ We will also have occasion to make use of the notions of semi-
continuity for both real-valued functions and point-to-set maps.
There are several equivalent definitions for these properties. The

ones most suited to our purpose are given below. The reader inter-

ested in a more complete development of these properties is referred

to Berge [4] and Hogan [17].
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Definition 2.1. Let ¢ be a real-valued function definea on the space X.

é
.::,‘,
%
¥
i
4

i) ¢ is said to be lower semi-continuous at a point xoex if

lim 6(x) > ¢(x).
x+xo

ii) ¢ is said to be upper semi-continuous at a point xoex if

lim 6(x) < ¢(x).

XX
o

Using these definitions, one readily sees that a real-valued
function ¢ is continuous at a point if and only if it is both upper

and lower semi-continuous at that point.

Definition 2.2. Let ¢:X>Y be a point-to-set mapping and let {en} cX

with an+E (¢ in X).

i) ¢ is said to be lower semi-continuous at a point € of

X if, for each §c¢(z), there exists a value ng and a
sequence {xn} CY with xnc¢(en) for n 0, and X X,

ii) ¢ is said to be upper semi-continuous at a point € of

X if xne¢(cn) and xn*§ together imply that xed(€).

Following Berge [4], we denote the lower (upper) semi-continuity
of point-to-set maps by l.s.c. (u.s.c.); for real-valued functions we
use the notation lsc and usc for lower and upper semi-continuity,

respectively.
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@ Definition 2.3. A point-to-set mapping ¢:X»Y is said to be uniformly

i compact near a point ¢ of X if the closure of the set U¢(e)_ is com-
' ¢ in N(e)

pact for some neighborhood N(t) of ¢.

In Section 3 we apply a reduction of variables technique to

| P(e) which transforms that program to an equivalent program involving
only inequality constraints. This approach simplifies the derivation

H: of intermediate results which are needed to derive the bounds on the

-i directional derivative limit quotients of f*(e) given in Section 4.

; A demonstration of the results is provided in the example of Section 5.

Section 6 concludes with a few remarks concerning related results.

i 3. Reduction of Variables

In P(e), if the rank of the Jacobian, Vxh, with respect to x of
the (first n) equality constraints in a neighborhood of a solution is

equal to n, then the given solution is completely determined as a

solution of the system of equations hj(x,e) =0, j=1,...,n, and the
(locally unique) solution, x(€), of this system near ¢ = 0 is then

completely characterized by the appropriate implicit function theorem,

depending on the assumptions about e, as for example in [9] and [20].

We are here interested in the less structured situation and hence

assume that the rank of Vxh is less than n. Since we shall be making

use of MFCQ, this entails the assumption that the number p of equality
constraints is less than n. If there are no equality constraints in a par-
ticular formulation of P(e), simply suppress reference to h in the follow-
ing development. Otherwise, we take advantage of the linear independence
assumption to eliminate the equalities, again using an implicit function

theorem.
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If the mapping h:Eank*Ep satisfies the following conditions:

i) h is continuous on an open neighborhood of the point

* % % * & . the
(xD,xI,e ), where chEp, xIeEn p’ and c* is in Ek,

. * * % 0
i) h(xD.xI,e ) =0,
iii) the p x p Jacobian Vth(xD,xI,a) of h exists in a
x k %
neighborhood of (xD,xI,e ) and is continuous at that

point, and

* k%
iv) Vth(xD,xI,e ) is nonsingular,

where x = (xD,xI), then the usual implicit function theorem results
hold, i.e., the system of equations h(xD.xI,E) = 0 can be solved for
X in terms of X1 and ¢ for any Xp and € near x: and e* respectively.
Furthermore, this representation is unique and the resulting function
x, = xD(xI,c) is continuous in a neighborhood, N*, of (x;,c*) and

x; = xD(x:,c*). Thus, in N*, the system h(xD,xI,c) = 0 is satisfied
identically by the function Xy = xD(xI.c). Under our additional

assumption that h is once continuously differentiable in x. and €,

1

xD(xI,c) is also once continuously differentiable in Xp and €.
Applying this result to P(e), near (x;,c*), since we have

F(xI,c) = h[xD(xI,e),xI,c] = 0, this problem can be reduced to one

involving only inequality constraints:

mianf(xI,e)

P(e)

s.t. Ei(xl,c) >0 (1), ..s;0)5

R T o
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where F(xI.c) : f[xD(xI,s),xI,e] and Ei(xI.E) = 81[xD(xI,e),xI,e] for
i=1,...,m, and where the minimization is now performed over the n-p
dimensional vector X The programs P and P are equivalent in a
neighborhood of (x;,c*), in the sense that the point x(e)cEn, with
x(e) = (xD(e),xI(e)), satisfies the Kuhn-Tucker first-order necessary
conditions for an optimum of P(e¢) if and only if the point xI(e) satis~-
fies those conditions for P(e), where xD(xI.e) is as given above.

We now show that the Mangasarian-Fromovitz constraint qualifica-
tion for P(e) is inherited by the reduced problem P(e). For simplicity
in notation, and without loss of generality, assume that e* = 0, assume

* is a local solution of P(0), and assume that the components of

that x
x have been relabeled so that x (xD,xI) and Vth(xD,xI,O) is non
singular. We first state, without proof, the straightforwardly proved

equivalence result that establishes the connection between local solu-

tion points of P and P.

Lemma 3.1. If f,g,hccl, and the once continuously differentiable vector

function Xy = xD(xI,s) is given (e.g., by the implicit function theorem
as indicated) such that h(xD(xI,c),xI,e) = 0 in a neighborhood of
(x*.O) = (x;,x;,O), then near ¢ = 0, the point x(¢) satisfies the Kuhn-
Tucker first-order necessary conditions for an optimum of P(e) if and
only if the point xI(c) is a Kuhn-Tucker point of P(e). Furthermore,
near ¢ = 0, x(¢) is a local solution of P(e) if and only if xI(e) is a

local solution of P(e), where x(e) = (xD(xI(e),c),xI(c)).

I1f there are no inequality constraints in P(c), then P(e) is an
unconstrained problem. In this instance, restriction oj X to a com-

pact set containing a solution set of P(0) makes it possible to obtain
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immediately the directional derivative, Dz?*(o) (see (4.1) for the
definition) of ?*(0), the optimal value of P(0), in any direction z

and in terms of x,, by using a result due to Danskin [5]. Since

1’
X; = xD(xI,e), it is easy to calculate the corresponding result for
P(eg) in terms of x = (xD,xI). Since this result is readily obtained
and since we have not seen this development in the literature, we give
the details before analyzing the more difficult situation involving
inequalities.

Assume that the feasible region R(e) of P(e) is nonempty and uni-
formly compact near €¢ = 0. Then, the solution sets S(e) of P(e) and
S(e) of P(e) will exist and will be uniformly compact near ¢ = 0. Con-

sider P(e): min f(xl,e) s.t. x_eR, a nonempty compact set, independent

b §

of €, such that for € near 0 the interior of R contains S(e¢). Danskin's
result (see also (6.1) and the ensuing discussion) says that under the

assumed conditions, Dz?*(O) = minx zVEFYxI,O) s.t. xIc§{O), the set
1
of solution points of P(0). Since Xy = xD(xI,e) is a differentiable

function, and since h[xD(xI,c),xI,e] = 0, it is easy to show that

-1
£ VExD + ch - Vfo Vth Vch + Vef wVEh + Vef VCL(x,w,e),
1

and L is the Lagrangian of P(e¢) (without the

vEF = v"b
where w = - Vv f V_h~
inequality constraints). Since‘?*(e) B f*(s), it readily follows that
D,£%(0) = min 27 L(x,w(x),0).
xeS(0) €
This result also follows as a specialization of our general re-

sults (see Corollary 4.6 and the note following the proof) as does

Danskin's result (see the discussion just before and after (6.1)). It

may also be of interest to observe that if the transformation
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Xy = xD(xI,e). or any nonsingular transformation, results in a problem
whose constraints are not dependent on the parameter ¢, then the above
approach applies, the domain of interest of the transformed problem
simply being the intersection of the set of points satisfying the
parameter-free constraints with a compact set R selected as above.
We now turn to the development of the results for the general .
problem P(e) where it is assumed that both inequalities and equalities

are present.

Theorem 3.2. 1If f,g,heCl, then MFCQ holds for P(0) at (x*,0) =

(x;,x*,O) with §¥ = (¥,.,¥ )eE® the associated vector, where ¥, ¢EP and
I DI D

?ieEn-p, if and only if MFCQ holds in problem P(0) at the point

(x;,o) with vector YI.

Proof. Suppose that MFCQ holds for P(0) at (x*,0) = (x;,x;,O) with

¥ = (¥,,¥,) the associated vector. Writing V_h as |V_ h:V_h| , we
D’ L X xD xI
see that (2.2) can be expressed as:

* A *
Vth(x 0) §p + Vxlh(x ,0) ¥, = 0. (3.1)

*
Since we have assumed that V_ h(x ,0) is nonsingular, we can solve

for ?b in (3.1) and obtain:
* wl *
?’D -[Vth(x ,0)] Vth(x ,0) ?I. (3.2}

Now, denoting the inequality constraints of 3(0) by E&, i.e.,

g - 8; (x(x1,0),%;,0), 1 = 1,...,m, by differentiating with respect

to xI we obtain:




R
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v E uny g ¥ * Y R,
X i xD i xIxD X i
or
VB =V g =% (3.3)
Xq i P 3 j
i
Multiplying by ?I in (3.3) we have:
: v
Vxlgi Y1 = Vx84 : ?i' (3.4)
I

But h(xD(xI,O),xI,O) = 0 so that
Vth(xD(xI’o)’xI’o) vxIxD 2 vth(xD(xI'o)’xI,o) = 0,
and since Vth(xD(xI,O),xI,O) is nonsingular, we obtain:

. -1
vxIxD = - Vth(JD(xI:O),xI)O) Vxlh(xD(xI’O)'xI’O).

Substituting this last expression in (3.4) we have:

=1
VT V=8 [vth(xD(xI.o).xI.o)] Vth(xD(xI,O),xI,o) ¥
I

and from (3.2) we see that at (x;,O)

b/
~ D ~

Thus, by (2.1) it follows that V_ §, ¥. > O.
X; - Sl
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To prove the converse, we first note that, by the hypotheses of

* %
' the implicit function theorem, Vth(xD,xI,O) is nonsingular. Thus,

*
the gradients Vxh (x ,0), j=1,...,p, are linearly independent and

B
by choosing

-1
~ * * ~
yD _[Vth(x ’0)] Vxlh(x ,0) yI'

(2.2) is satisfied for j = 1,...,p. The inequality in (2.1) now

: follows from (3.5), a direct consequence of (3.1).

In [11], Gauvin and Tolle established that the set of Kuhn-
Tucker multipliers associated with a solution, x*, of P(0) is non-
empty, compact and convex if and only if MFCQ is satisfied at x*.
That result enables us to establish in Theorem 3.3, a necessary link
between a directional derivative, with respect to the decision vari-

able Xp» of the objective function at an optimal point and a direc-

tional derivative of the Lagrangian taken with respect to the parameter
€. It is this relationship which eventually leads to the upper and
lower bounds on the directional derivative of ?* which are derived
in the next section.

| For notational simplicity, throughout the remainder of this

paper we shall refer to the problem functions of the program Fe)

without the 'tilda' notation. The distinction between reference to

{ P(e) and ?(e) should be clear from the text. Also, the decision
variables for the reduced problem will not be subscripted, and, unless

k specified to the contrary, all gradients will be understood to be taken

E ’ with respect to the relevant decision variable.

4 - 13 =

=5 TR S ol T o W ]
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The next two theorems are crucial in obtaining the sharp bounds
on the optimal value directional derivative limit quotient. They show
that, at a local minimum where MFCQ holds, there exists a direction
(in En-p) in which the directional derivative of the objective func-
tion yields that portion of the bound attributable to the constraint

perturbation.

Theorem 3.3. If the conditions of MFCQ are satisfied for some

* ~ —in=
x €S(0), then, for any direction zeEk, there exists a vector yeEn P

satisfying:
* = *
i) —Vgi(x 0 ¥ < zvegi(x ,0) for ieB(0), and (3.6)
* - *
ii) Vf(x ,0) y = max [-z Vég(x ,0ul. (3.7)

SRR
uek(x ,0)

Proof. Given zeEk, consider the following linear program:

*
- L
max, [~z Vig(x »0)ul

VE(x",0)

*
s.t. uvg(x ,0)

uigi(x*’O) =0 (i=1,...,m)

My >0 (i=1,...,m).

The dual of this program is given by:
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*
min Vf(x ,0) y
y,Vv

* * *
5 s.t. Vg, (x,0) y + g, (x ,0)v; > -z v.g;(x,0) (i=1,...,m)
yeEn-p, v, unrestricted.

? i

*
Since MFCQ is assumed to hold at (x ,0), from [11] we have that

o, R
K(x ,0) is nonempty, compact and convex. Thus, the primal problem

is bounded and feasible. By the duality theorem of linear pro-

gramming, the dual program has a solution, (y,v), and hence there
exists a vector y satisfying (3.6) and (3.7).

By changing the sign of the objective function in the primal
program above, thereby maximizing z Vég(x*,O)u, we are also able to

conclude the following.

: Theorem 3.4. If the conditions of MFCQ are satisfied for some

* ~ I
x €S(0), then for any direction zeEk, there exists a vector yeEn P

| % satisfying:

| :

i § * - * -~

é z i) Vgi(x ,0) v > zvegi(x ,0) for iecB(0), and (3.8)
| 2

i * - : *

i ii) Vf(x ,0) y = max [zVCg(x »0)u]. (3.9)

~ *
uek(x ,0)

By taking f(x,0) = constant, then since any point in R(0) solves
?(0), it easily follows from Theorems 3.3 and 3.4 that there exists a

vector ; satisfying (3.6) and (3.8) for any x* in R(0).

- 15 =
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In the next two theorems we show first that, along any ray emi-
nating from € = 0, P(e) has points of feasibility near ¢ = 0, and
second, that the existence of feasible points is guaranteed not only

along rays but in a full neighborhood of ¢ = 0.

E Em, with gcCl. If MFCQ holds at

x*¢R(0) then, for any unit vector 2eE" and any § > 0,
g(x* + 8(y + &¥),8z) > 0 for B positive and sufficiently near zero,

where y is any vector satisfying (3.6).

Proof. Let z be any unit vector in Ek and consider first the case
*
in which the constraint g,(x,e) > 0 is binding at (x ,0). Expanding

* & *
gi(x + B(y + §¥),Bz) about the point (x ,0) we obtain:

* - - * -
g;(x + B(y + 63),82) = B(y + &3) szi(x + tB(y + &¥),Bz)
+ B8 z chi(x*,t'Bz)
= 8ly V.8, (x*+ t8(F + 69),82) + 2 V g (x*,t'52)]

+ B8 Vg, (x*+ tB(y + &9),82),

where t,t'e(0,1) and t = t(B), t' = t"(B).
Now, by (2.1), ngi(x*,O) ¥ = a; > 0. Thus, there exists 8' > 0
such that for all 38e¢[0,B'],
~ * - 3ai
Y V.8, (x+ tB(y + §9),82) > = .

From (3.6) it follows that for B sufficiently small,

- * .
y ngi(x + tB(y + 69),82z) + 2 V g (x*,t'sz) 3 6‘1.
g it -z

- 16 =
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Thus, for B positive and near zero we have:

* g -
g, (x + B(y + §9),82) > B( 6""i)+ Bs(3ai)= 85 5 8.

C & & 2

*
Finally, if gi(x ,0) > 0, since each 8y is jointly continuous
in x and €, it follows that, for any unit vector zeEk, and any § > 0

* =%
Si(x + B(y + 6¥),Bz) > 0 for B near zero.

>0

™I

*~
Theorem 3.6. If MFCQ is satisfied at x €R(0), then there exists
such that for every unit vector zeEk and any § > O,
* = - - -
g(x + B(y + &¥),8z) > 0 for all Be(0,B], where y satisfies (3.6) and

¥ is given by the constraint qualification.

Proof. From the previous result, we have that for any unit vector
zeEk and any § > 0, there exists B' = 8'(z,8,y,y) such that for all
Be(0,8"]), g(x*+ B(y + §Y),Bz) > 0. For the remainder of this proof

we suppress all but the first argument of R' writing B' = B'(z), and

further assume that B'(z) = sup {Y:g(x*+ B(y + §5),8z) > 0 for all
Be(0,v) 1.

Suppose there is no value B which satisfies the stated condi-
tion for all unit vectors z. Then there must be a sequence {zn} of
unit vectors from Ek with B'(zn)*O. By the compactness of the unit
sphere, there exists a unit vector EeEk with o z for some
{zn }c {zn}. Since B'(zn)+0, there is an integer N such that for all
n > N, B'(zn) 5_8'(2) - £ where 0 < £ < B'(z). Relabel the subse-

quence {zn:n > N} so that it is indexed by n = 1,2,...; we now refer

- 17 -
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to this subsequence as the sequence {zn}. By the definition of
g8'(z), we must have, for some i = 1,...,m, gi(x*+ B(y + 6?),an) <0
for Bc[B'(zn), n) for some n = n(zn). However, since 5 z and 84
is continuous, there must be an integer Nl > N such that

* 4 Al =
gi(x + B(y + dy),an) > 0 for all n > N and all Be(0,B'(z)). Since

1
B'(zn) < B'(z) for all n > N, we have a contradiction and the proof

of the assertion is complete.

Since, by Theorem 3.3 and the observation immediately following
Theorem 3.4, the satisfaction of the Mangasarian~Fromovitz constraint
qualification at a feasible point, x*, of P(0) is enough to guarantee
the existence of feasible points for P(e) near x*, one might suspect
that there exist points feasible to P(e) which are also feasible to
P(0). This is indeed the case as the next theorem implies (see the
statement immediately following the proof of Theorem 3.7). We shall

need Theorem 3.7 in obtaining one of the key results in Theorem 4.3.

Theorem 2.7. Let Bn + 0t in El, let z be any unit vector in Ek, and
let § > 0. If x ¢RK(B 2), with x_+ x"¢R(0), and if the conditions of
MFCQ are satisfied at x*, then X, + Bn(§ + Sy)éi(o) for n sufficiently
large, where y satisfies (3.8) and ¥ is given by the constraint

qualification.

Proof. Consider first the case that ieB(0). Expanding gi(xn + Bn(; + §¥),0)

about the point (xn,an), we obtain:
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gi(xn + Bn(y + §9),0) = gi(xn,BRZ) =+ Bn(y 2 éy)Vgi(xn + tBn(y + 6¥),0)

8,2 Vegi(xn L= Bn(y + §9),t an)’

where t,t'e(0,1), t = t(Bn), t' = t'(Bn). If, for n large,
X + Bn(; + sy)tﬁ(o), since X, is feasible for ?Kan) > 0, it must

be that
B, (Y + 69) Vg, (x +tB (y + &69),0) < Bz V g, (x + 8 (y+ &9,t'6 2).
Dividing by Sn in (3.10) and taking the limit as n - o0 we have

7 + & v, (x*,0) < z V g, (x*,0).

But this countradicts (3.8), since § > 0 and by MFCQ ¥ Vgi(x*,O) >0

If, on the other hand, i¢B(0), g;(x + 8 (v + §),0) > 0 for
large n by the continuity of gy and the fact that . x* and Bn gl
Thus, X + Bn(§ + 8¥)eR(0) for n sufficiently large.

It may be interesting to note, that by taking x = *4 Bn(; + §%)
for each n in the hypothesis of Theorem 3.7, then Theorems 3.3, 3.4,
3.6, and 3.7 together imply that R(e) and R(0) have points in common
for ¢ near O.

We now show that the optimal value function f*(e) is continuous
near € = 0 under the given assumptions. This was proved by Fiacco
[8], the details being repeated here to make this paper complete.

This result will be needed in the proof of Theorem 4.3.

(3.10)

R L i i e e e e e - el o e b
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Lemma 3.8. If R(0) is nonempty and R(e) is uniformly compact for ¢

near zero, then R(e) is a u.s.c. mapping at ¢ = 0.

R S S TR S0 PPy P

Proof. Let B 0 in Ek, and (for n sufficiently large), let ,
xnei(sn). Thus, for n sufficiently large, g(x_,e ) > 0. By the
uniform compactness of i(s), there exists a convergent subsequerce
{xn.} of {xn} with xn. + x for some x in the closure of UR(e), where

3 9 € in N(0)
M(0) is some neighborhood of ¢ = 0. But by the continuity of g, we

must have 0 < lim g(xn € ) = g(i,o). Thus xcR(0) and we have that
j»oo s M

R(e) 1s u.s.c. at € = 0.

Theorem 3.9. If R(0) is nomempty, R(c) is uniformly compact for ¢

near zero, and if the conditions of MFCQ hold at x*eS(0), then f*(¢) is

continuous at € = 0.

Proof. Let e 0 in Ek, and (for n sufficiently large) let xneg(en).
By the uniform compactness of R(e), the sequence {xn} admits a con-
vergent subsequence {xn }. Let x denote the limit of that subse-

quence. From Lemma 3.8, R(¢) is a u.s.c. mapping at ¢ = 0, so

x¢R(0). Thus,

lim £*(e) = lim £%(c_ ) = lim f(x_ ,e_ ) = £(X,0) > £%(0),
0 Jre Ty e TN

£
{
!
|

and we see that f¥(e) is lsc at ¢ = 0.
Now let 6§ > 0, let ¥ be given by MFCQ for x*, and let y satisfy

(3.6). From Theorem (3.5) we know that x* + Rk(; + 6?)6§(Bkz)

- 0 =




) for all unit vectors zcEk providing Bk is sufficiently near zero.
1t Letting K 0 and without loss of generality, assuming €h * 0 for all

n, setting 8, = ]Iek|| and z, = ek/llckll, we see that

Lo £%(e) = Lim £*(ey) < lim £(x* + 8, (¥ + 69,8, 2) = £(x*,0).
>0 €0 k-+00

| Thus f*(e) is also usc at ¢ = 0 and we may conclude that f*(c) is

continuous at ¢ = 0.

We should mention that the continuity of ™ requires only the

continuity of f in addition to the once (joint) continuous differ-

entiability of the constraints.

4., Bounds on the Parametric Variation of the Optimal Value Function

f In this section we are concerned with the directional derivative
of the optimal value function for P(e). We first derive upper and
lower bounds on the directional derivative limit quotient of f*(e)
for‘?(c) and then obtain the corresponding bounds for P(e). These
results extend the work of Gauvin and Tolle [11], who obtained the
analogous results for the case in which the perturbation is restricted
to the right-hand side of the constraints.

As above, we will, without loss of generality, focus attention

on the parameter value ¢ = 0. For zeEk. the directional derivative

of f*(O) in the direction z is defined to be:

= 3]

- prom
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* *
D,£*(0) = 1i3+ £ (BZ)B' = ) B (4.1)
8

providing that the limit exists.

Theorem 4.1. if, for ?(e), MFCQ holds for some x*cg(O), then, for

any direction stk,

* *

lim sup £ (BZ)B £0) < max zvct(x*,u,O). (4.2)
>0+ ueR(x*,0)

Proof. Let B satisfy the conditions of Theorem 3.6, let & > 0

and ¥ be the vector given by the constraint qualification, and

let y satisfy eqs. (3.6) and (3.7). Then, for any zeEk.

x* + B(y + §Y)eR(Rz) for Be[0,R] for some £ > 0, so that

* *
lim sup : LBQB- L) < lim sup
g0t g0t

f(x* + B + &) ,82) - £(x*,0) _ df
8

= (¥ + MVE*,0) + 2V _f(x*,0).

Since this inequality is satisfied for arbitrary § > 0 we can

take the limit as § - 0 and obtain:

i e £*(8z) - £*(0)

5 <y VE(x*,0) + 29 £(x*,0).
g0t

-3 -
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The conclusion now follows by applying (3.7):

£*(8z) - t*(0)

‘ lim sup < max [-zV'g(x*,0)u] + 2V f(x*,0)
| g0t ’ ueR(x*,0)  © 5
= max zvét(x*,u,O).
ueR(x*,0)

: Corollary 4.2. Under the hypotheses of the previous theorem, if

L MFCQ holds at each point xeS(0), then

g | ; * _ g%
| ‘ lim sup £ (Bz)e £7(0) < inf max zvgf(x,u,O). (4.3)

g0t xe3(0) uek(x,0)

Proof. The result follows directly by applying the previous theorem %

at each point of S(0).

2 Theorem 4.3. If, for P(e), R(0) 1is nonempty, R(e) is uniformly com-

| ; pact near ¢ = 0, and MFCQ holds for each x*¢S(0), then, for any

direction zcEk, z a unit vector,

* _ ek *)
1im 4 £ (ﬁz)s EX0 , ain 20 T(x*,1,0) (4.4)
8+0t

uek (x*,0)

holds for some x*eg(o).

Proof. Let xneg(snz) and let 8 -+ 0% be such that

* i f(x_,8 z) - f(x*,0)
1im iaf £ (ﬁ‘)s 50 . 330 BB - ool i
g+ot n-+00 n

-23 -
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Since R(e) 1is uniformly compact, there exists a subsequence, which we
again denote by {xn}, and a vector x* such that . . By Lemma 3.8
R(e) is u.s.c. at € = 0 so x*cRK(0). Since we showed in Theorem 3.9
that £*(¢) is continuous, it follows that x*¢S(0). Then, since
Theorem 3.7 assures that X, + Bn(; + 6¥)eR(0) for n sufficiently large,

it follows that

* * f(x_,8.2) - £(x*,0)
1im tnf S(82) = £60) _ jyp—0'n -
g0t n+a0 n
£(x ,8.2) - f(x +8 (y + 6,0)
> lim 8
n—+oo n

:1:»!:0[-()' + V(e ) + 29 f(a )]

by the mean value theorem, where ay is the usual convex combination

(in EVP x Ek) of the two arguments in the preceding quotient. Thus,

* L gk 9
lim inf £ (BZ)B f‘SQ)'i lim z Vef(an) - (y + %) Vf(un)
g0t n+o0

-z Vef(x*,o) - (y + &) vE(x*,0).

Using (3.9) and noting that § was chosen as any positive value, we

conclude that for any x*eg(o) where MFCQ holds,

£*(8z) - £*(0)

1im inf > z V_f(x*,0) - max 2V g(x*.o)u]
ot ; iy uek(x*,0)
= min z Vef(x*,u,O).
ueR(x*, 0)

- -

. '*’w-«v‘"}“ b Ve Ty EFy m AR .
PR g o WY h
e ;.y}«;vﬁ‘}ﬂﬁ; DR 5, §

AN 4R 0 B T N TN s )




T-393

Corollary 4.4. Under the hypotheses of the previous theorem

* *
lim inf £ (BZ)B_ £(0) > inf min z Vet(x,u.o). (4.5)
g0t xeS(0) uekR(x,0)

Now, by the reduction of variables that was applied earlier, we

see that, in a neighborhood of (x;,o), with x = (xD(xI,e),xI), that

L(X,Hywye) = £(x,€) - ug(x,e) + u h(x,¢€)

= f(xD(xI.e).xI.e) - u s(xD(xI.e).xI,e) + w h(’ﬁ)("x'e)"‘rc)’

= ?(xI,E) - u B(x,e€) -I(xl,u,e)

with f(x,e) = ?Yxl,e), g(x,e) = E(XI.E). and h(x,e) = F(xI,e) = 0. Thus
L(X,H,wy€) = t(xl,u,») in a neighborhood of (xD(x;,O),x;,O) = (x*,0)
and, with w deiermined by w= - (Vfo - uViDg)[V;Dh-ll, it follows
easily that VEL = ch and the linear program appearing in the proof

of Theorem 3.3 can readily be formulated analogously as an equivalent
problem in terms of L(x,u,w,e). Thus, all of the results obtained

above for P(¢) can be immediately generalized to P(e). For complete-

ness, we state these results as the next Theorem.

Theorem 4.5. 1f, for P(e), R(0) is nonempty and MFCQ holds at each

xeS(0), then for any unit vector zcEk,

* *
lim sup £ (Bz)e- £7€0) < inf max z VCL(x.u.m.O). (4.6)

g0t ~ xeS(0) (u,w)eK(x,0)
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and if R(e) is uniformly compact for € near € = 0, then

Tia dof SAEE) = £200) | y0p  pin 2V L(X,1,0,0). (4.7)
g0t 8 xeS(0) (u,w)ekK(x,0) .

Moreover, we are able to obtain the existence of the directional
derivative of f* at € = 0 by assuming, as Gauvin and Tolle [11] did
for right-hand side programs, the linear independence of the binding

constraint gradients at each point x*eS(0).

Corollary 4.6. Assume R(0) is nonempty and R(e) is uniformly compact

near € = 0. If the gradients, taken with respect to x, of the con-
straints binding at x* are linearly independent for each x*€5(0),

then for any unit vector zeEk, sz*(O) exists and is given by

D f*(O) = inf Z VEL(X,U(X),w(X) 90):
" xeS(0)

where (u(x),w(x)) is the unique multiplier vector associated with x.

Proof. At any point x*eS(0), the linear independence of the binding
constraint gradients implies the uniqueness of the Kuhn-Tucker multi-
pliers corresponding to x*. Inequalities (4.6) and (4.7) now combine

to yield the desired result.

Note that in Corollary 4.6, if P(e) contains no inequality con-

straints, we could replace inf by min since u would not appear and

w=-V_fV h-1 which is continuous in x, making zVEL a continuous

*D

function of x minimized over S(0), a compact set.

We may also show that two of the observations made by Gauvin and

Tolle [11] about sz*(O) for right-hand side programs apply to P(¢)

- 26 =
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as well. First if D_£%(0) = - D__£*(0), then

inf max

z VEL(x.u.w,O) = sup min
xeS(0) (u,w)eK(x,0)

xeS(0) (u,w)eK(x,0)

Thus, if, for all unit vectors zcEk, sz*(O) = - D_zf*(O) and

sz*(O) = inf max

z V L(x,u,0,0),
xeS(0) (u,w)eK(x,0)

then (4.8) provides a necessary condition for the existence of VEf*(O).
In addition, if (4.8) holds for every unit vector zcEk and if x*cS(O)
is the unique solution of P(0), then its associated Kuhn-Tucker multi-
plier vector is unique.

We next apply the results derived above to a particular class
of programs. We show ia the next theorem that if P(e¢) is a convex
program in x for ¢ near ¢ = 0, i.e., if f(x,e) and —gi(x.e),

i=1,...,m, are convex and if h,(x,e), j = 1,...,p, are affine in x,

J
then sz*(O) exists and is given by (4.9). To prove this result, we
will restrict our attention to ?(c). We are able to do this since
the functions hj(x,e) are assumed to be affine in x and gi(x,c) are
taken to be concave in x, from which it easily follows that gl(x.c)

is concave in x for i = 1,...,m.

Theorem 4.7. 1In P(e), let f(x,c) and -gi(x,c). i=1,...,m be con-
vex and let hj(x,e), j=1,...,p be affine in x. If R(0) is non-
empty, R(e) is uniformly compact near ¢ = 0, and MFCQ holds for each
x*eS(O), then, for any unit vector zcEk,

sz*(O) = inf max

chL(x,u,m.O). (4.10)
xeS(0) (u,w)eK(x,0)

A i

z VEL(x,u,w,O).

(4.8)

(4.9)
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Proof. Without loss of generality, we will prove this result for
?(e). Let x*¢S$(0) and xnegfsnz) with Bn + 0% in such a way that

i £(x_,8 z) - £(x*,0)
Vin g 2080 £ 000 _ 4, BT g

g+ot 8 n->00 Bn

and x x* as in the proof of Theorem 4.3. For all u*eK(x*,O),
?:(xn9u*!8nz) = f(xn.BHZ) g u*g(xn.BnZ) = f(xn,an),

where the inequality follows from the non-negativity of both u* and

g(xn,an). Thus, since L(x*,u*,0) = f(x*,0),

£(x_,8 z) - £(x*,0) Tx_,u*,8 2) - T(x*,u*,0)
lim 2.1 > lim L B

n+o0 Bn n-+>co Bn

Now, as a result of the Kuhn-Tucker conditions and the convexity
assumptions, x* is a global minimizer of T(x,u*,0), so
t(xn’u*y an) bz t(x*) u*,O)

1lim 8 > lim 8
n>o0 n n-+>o0 n

I(xn,u*,an) -‘t(xn,u*.O)

t(xnvu*go) ¥ anve‘t(xn.u*,tﬁnz) - L(xﬂ’ U*oo)
= lim 8
n+0 n

by the mean value theorem, where te(0,1). Thus

£(x,,8,2) - £(x*,0)

1lim > 1im zv T(x_,u*,t8_z),
n->00 Ba nroo ¢ 1 -

and, passing to the limit on the right, we are able to conclude that

- 28 -
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f(x_ ,8 z) - f(x*,0) s
lim = > 2V T(x*,u%,0). (4.11)

n—+00 n

Thus, for some x*e§YO), since (4.11) holds for each u*eﬁ(x*,o), and

recalling from [11] that K(x*,0) is compact,

* *
1im int £ (SZ)B' £0) > max 2V T(x*,u,0),
g0+ ueK(x*,0)

from which we see that

* *
lim inf x (BZ)B- & (Ql’i inf max zVéf(x,u,O).
g+0t xeS(0) ueK(x*,0)
Combining this result with that obtained in Corollary 4.2 we conclude
that
D £*(0) = inf max 2V T(x,,0).
xeS(0) nek(x,0)
For convex P(e), (4.10) now follows by an inversion of the reduction

of variables process applied to yield F(c).

5. Example

We use the example stated below to demonstrate the theoretical
results obtained in the previous sections. For the given problem we
show that the conditions of MFCQ hold at every point in S(e) and we
give the form of the vector satisfying the constraint qualification.
We then show that the expected form of the vector satisfies (2.1) and

(2.2) for P(e), and that the bounds stated in (4.6) and (4.7) are

attained.
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Consider the program

min ex; P(e)

s.t. gx,e) = = (=) = (x22% + 420

h(x,e) = - X, + X, + ¢ =0,

The solution of this program is easily determined to be x: = x; + € with

s fo e>0

2 , and if € = 0, x*
l2 e<0

, can be any value in the interval [0,2]. (5.1)

Applying the reduction of variables technique outlined earlier, with

= x. and X, = X,, P(¢) is transformed into the egquivalent program
e S St R

min c(x2+c) P(e)

2
s.t. Z(xz,c) = - xg - (x2—2) +4>0

whose solution is given by (5.1).
For both P(e) and P(e), the optimal value function can be written
as

‘52 €e>0

£*(e) = ¢ (5.2)

le242¢ e <o
We see that £* is continuous for all values of €, but it is not differ-
entiable at ¢ = 0. It does, however, have directional derivatives at

€ = 0 which are given by

0 z =1 4

D _£*(0) = 3 » (5.3)
. -2 z=-1
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To illustrate Theorem 3.2, we first determine the general form
of the vector, ¥, which is guaranteed at points xeS(e) at which

MFCQ is satisfied. The constraint gradients of P(g) are
vg(x,e) = [-2(xl—e), -2(x2-2)], and

vh(x,e) = [-1,1].

Applying (2.1) and (2.2) at a point x* = (xI,x;)eS(e), with
¥ = (y;»¥,), we have vg(x*,e) ¥ = -2(xI-e:) ¥ - 2(%,-2) y, > 0 if

g(x*,O) = 0, and

Yh(x*,e) ¥ = -y, + ¥, = 0.

Thus, for any value of €, since g(x,e) is binding only if x;e{0,2}.

¥ can have the form

(a,a) Xy = 0
Y=ty Oexjez, (5.4)

(c,c) x

for any real numbers a,b,c with a > 0, b arbitrary, and c < 0. We
can also conclude that MFCQ holds at every solution of P(g).

In a similar fashion, we see that, for F(e),
Vg(xz,e) = -2x2 - 2(x2-2),

so applying (2.1) we find that the vector ?I in the reduced

program takes the same form as the second component of ¥ in (5.4).
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Now

VL(X,u,w,e) = [e + 2u(x1-e) - w, 2u(x2-2) + w],

so that at a solution x*eS(O) we must have ZuxI - w=20 for

(u,w)eK(x*,O). Then

* o
VeL(x s H,yw,0) x|

and, with S(0) = {erz: X1¥X,, x26[0,2]},

0 z =1
min max z VEL(x,u.w,O) = - (5.5)
xeS(0) (u,w)eK(x,0) -2 z = -1
Comparing (5.3) with (5.5) we see that (4.6) holds with equality.
Now, considering inequality (4.7), we first note that for any
neighbofhood N(0) of OeEl, the closure of the set
{erZ: X = (x2+e, xz), xze[0,2], € in N(0)} is compact so R(e) is
uniformly compact for € near ¢ = 0. We calculate
0 z=1
min min z VEL(x,u,w,O) = "
xeS(0) (u,w)ek(x,0) -2 z=-1
and find that (4.7) also holds with equality.
An example is given in [11] which illustrates that (4.6) and

(4.7) need not hold with equality.

6. Related Results

Inspection of the derivation of (4.6) and (4.7) reveals that the

bounding term in these expressions, namely zVeL(x.u.w.O), can be
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viewed as the sum of two distinct expressions, one resulting from the
variation of the objective function of P(e) with respect to the
parameter, the other deriving from the dependence of the region of
feasibility on the parameter. The first of these terms is z Vef(x,o)
and is easily seen to result directly from the manipulation of the
limit quotients in the proofs of Theorems 4.1 and 4.3. The second
component , z[-V;g(x,O)p + Véh(x,e)w], results from the assumption that
MFCQ holds at points of S(0). The conditions of MFCQ are invoked to
enable us to conclude (3.7) and (3.9), as well as the existence of
points feasible to P(e) in a neighborhood of ¢ = 0. Having made
these observations, we are now able to discuss the relationships
between the bounds provided here and results previously obtained by
others. As we shall see, in particular instances in which the direc-
tional derivative of f* is shown to exist, it is expressed as either
a function of Vef or a function of Veg and Veh, or a combination of
all of these terms, depending, as one would suspect, on where in

P(e) the parameter appears.

Danskin [5,6] provided a now well-known characterization of the
directional derivative of the optimal value function of P(e) in the
case that the constraints are independent of a parameter. Under the
conditions that the region of feasibility, R(0), is compact, and
f(x,e) and st(x,e) are continuous at ¢ = 0, Danskin showed that

sz*(O) =min  z V_£(x,0) . (6.1)
xeS (0)
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Relating our hypotheses to Danskin's construct, we first note the
equivalence of our assumption of the uniform compactness of R(e) for
€ near € = 0, and the assumption that the feasible region is compact
if the constraints of P(e) do not depend on e. To see this, one need
only consider that, in this case, R(e) = R(0) for all € and apply
Definition 2.3. In addition, when the feasible region is independent
of €, our development need not consider the perturbed point

x* + B(y + 6¥), but may be restricted to the point x*¢S(0). The
proofs of Theorems 4.1 and 4.2 remain valid in this case by simply
suppressing all reference to the dependence of the constraints on ¢

and by considering the unperturbed point x* instead of x* + B(y + &%).

One is then led to conclude that, analogous to (4.6) and (4.7),

£*(8z) - £*(0)

lim sup 2 < min z V £f(x,0), and (6.2)
g0t xeS(0) .

* *
lim tnf SE= L) 5 nin 2 v £(x,0, (6.3)
g0t xeS(0)

for any unit vector zcEk. Thus it follows that, under the stated
conditions, namely the compactness of R and the continuity of f(x,€)
and st(x,c) at € = 0, our results are consistent with those of
Danskin in that they verify the existence of sz*(O) and show (from
(6.2) and (6.3)) that it can be expressed as in (6.1).

Gauvin and Tolle [11] showed, for programs with right-hand side

perturbations, i.e., for programs of the form
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min f(x)
P'(e)
8.0, gi(x) > €4 (i=1,...,m),

h,(x) = ¢

j (jgla'O'op):

urt

that although the directional derivative of £* may not exist, its
limit quotient can be bounded. In particular, they concluded that
if MFCQ holds at each element of S(0) and if R(¢) is uniformly compact

for ¢ near ¢ = 0, the following inequalities are satisfied:

£*(8z) - £*(0) b P
lim sup < inf max Mg = N e g , (6.4)
g0t 8 xeS(0) (u,m)eK(x,O)(iEh.i 1 jéi 3 m+j)
and
f*(8z) - £*(0) . .
lim inf > inf min > Hug, = w, z . (6.5)
50t 8 5 (0) (mau)eK(x,0) \ion 1 4 j§1 3 *mes)

Now, from (4.6) and (4.7) we see that the bounds we have given for
the general program P(¢) reduce to those in (6.4) and (6.5) respec-
tively for the more restrictive perturbations appearing in P'(e).

In the case of convex programs, the existence of sz*(O) assured
by Theorem 4.7, and its expression as (4.10), corresponds under
slightly different assumptions, with results achieved by Gol'stein
[12] and Hogan [15]. Theorem 4.7 is a direct extension to the general
perturbed mathematical program of a result given by Gauvin and Tolle
[11] for right-hand side programs.

In an as yet unpublished manuscript communicated to us by
J. Gauvin, A. Auslender has apparently extended the results of Gauvin

and Tolle [11] to problems involving non-differentiable functions. In
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particular, the bounds noted by (6.4) and (6.5) are obtained for
right-hand side programs in which the problem functions are locally
Lipschitz and those defining the equality constraints are continuously
differentiable. We are currently studying this result to understand
the relationship between our assumptions and those of Auslender and

to determine if Auslender's result extends to the more general pro-

gram P(e).
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